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Introduction
= New memory traces are reactivated during post-learning
sleep (Wilson & McNaughton, 1994; Maquet et al., 2004)

* However, we lack direct, temporally-precise evidence of
reactivation in the human EEG

= We searched for such evidence shortly after giving
learning-related cues during slow-wave sleep

Procedure
Wake Classifier Training
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Sound - face/place overlearning
STUDY TEST W/ FEEDBACK
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Brad Pitt Big Ben “Will Smith” Brad Pitt

During overlearning — 100% correct 2x. After the nap — 81% correct.

Face/place — spatial location learning

Learning Testing Feedback

[meow]

Pre-nap test

Pre-nap testing Feedback Pre-nap error

Stimulation period

Experiment 1: Cued half of the sounds associated with each category (e.g. [meow],
[violin]). Mean: 7.2, range: 2.8-9.2 cues per item.

o

[meow] 15-Hz oscillating rhythm

Experiment 2: Cued ALL sounds, with half followed by 2s, 15 Hz amplitude-
modulated oscillating rhythm. Mean: 6.6, range: 2.7-10.9 cues per item.

Post-nap test

Post-nap error

[meow]
Post-nap testing

“Brad Pitt”

Participants: Thirty-three (Exp 1: 17 18-33, 8 female; Exp2: 16, 19-33, 11 female) subjects refrained
from caffeine and alcohol leading up to the study and awoke one hour earlier than normal.

Using multivariate pattern analysis to investigate

memory reactivation during sleep

James W. Antony'’, Luis R. Piloto?’, Ken A. Paller?, Ken A. Norman?
'Northwestern University, 2Princeton University; * = equal contributors

Sound cues during sleep improve spatial memory

BehaVioraI measures Experiment 1 2-way ANOVA: Main effect of

cueing (p=0.03), no main
effect of type or interaction
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* = p < 0.05; T=0.05< p<0.1 Cued Uncued FaceCued FaceUncued PlaceCued PlaceUncued

Pattern classification analysis strategy

Overview
Types: Alignment types: Features for all (64) electrodes:
 Wake (data not shown) * Cue-locked time bins * Voltage values
* Sleep * SO trough-locked time bins * Hilbert-transformed power at 5
 Wake = sleep (data not shown) * SO trough-locked phase bins frequencies: 2-4, 4-8, 8-16, 16-30, 30-59 Hz
Classifier
We trained a separate logistic regression classifier for each bin Training Test

Cue Cue Cue

across all 64 electrodes. The electrode values (voltage or power)
were z-scored within each bin to highlight differences across
electrodes. We trained the classifier on all subjects except one and
tested on the withheld subject (i.e. leave-one-subject-out
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classification). Train
W
Goal: successfully discriminate sleep cues previously associated Face pattern Place pattern ?
with faces vs. places. | 5 Aooly ‘
Predictions: classification accuracy will be greatest during slow classifiers
oscillation up-states when we expect reactivation to occur.
Sleep
SO trough-locked phase bins Cue-locked time bins SO trough-locked time bins
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Post-cue spindles predict memory

Sleep spindles are short bursts (0.5-3s) of activity between 11-16 Hz during NREM sleep.
Correlational (Cox et al.,2012; Diekelmann & Born, 2010) and causal (Mednick et al., 2013)
evidence suggests they play a role in memory consolidation.
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F(1,15)=5.4, p=0.03 3-way interaction: F(1,15)=4.2, p=0.05

Summary

» Cueing benefits memory (Rudoy et al., 2009)

» [nformation-related activation was consistently discriminable during
slow oscillation up-states

= Consistent with ripples (Molle et al., 2006) and pattern
ensemble reactivation (Gulati et al., 2014) occurring
preferentially during slow oscillation up-states

= Post-cue sleep spindles predict memory
= Oscillating sounds altered this normal predictive effect

Future Directions

Wake - sleep transformation — do learning-related patterns re-
emerge during sleep or does reinstatement constitute a different
pattern?

|s there a consistent temporal relationship between pattern
reinstatement and sleep spindles?

Does reinstatement predict memory on an item-by-item or subject-by-
subject level?
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